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We study the synchronizability of weighted aging scale-free networks with non-normalized and asymmetri-
cal coupling matrices. We found that the synchronizability of such networks is improved when the couplings
from older to younger nodes become dominant, where the out degrees of the nodes are heterogeneous and their
in degrees are homogeneous, and that the synchronizabilty of the networks is seriously weakened or even lost
when the couplings from younger to older nodes become dominant, where the out degrees of the nodes are
homogeneous and their in degrees are heterogeneous. We also found that both the heterogeneity of nodes and
a smaller average degree can improve the synchronizability of the networks with some appropriately chosen
weighting parameter values. We finally show an example of the coupled Lorenz systems for illustration and
verification of the theoretical analysis.
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I. INTRODUCTION

Many social, biological, and communication systems can
be cast into the form of complex networks. Various models
have been presented and investigated recently �1–5�, among
which the statistical characteristics and dynamical perfor-
mances of small-world network models �with near Poisson
degree distributions� and scale-free network models �with
power-law degree distributions� were studied quite inten-
sively. Synchronizability is an important subject in the study
of dynamical performance of complex networks. The exist-
ing research reports on synchronization of unweighted net-
works show that the small-world property enhances synchro-
nization in small-world networks, such as the NW �2� and
SW �1� networks, while although the heterogeneity may re-
duce the average path length �which improves the small-
world property� but it weakens the synchronizability of
scale-free networks �6�.

Most studies on the synchronizability of networks are fo-
cused on unweighted and symmetrical networks. However,
many real-world networks are weighted and asymmetrical;
for example, social networks are typical weighted asym-
metrical networks, in which the interaction between two in-
dividuals depends on several social factors such as age, so-
cial class, personal leadership, and charisma �7�.
Nevertheless, there are some studies on the synchronization
of weighted networks �8–10�. In particular, Hwang et al. �10�
studied the synchronizability of weighted growing scale-free
networks with normalized and asymmetrical coupling matri-
ces. Their study shows that synchronization is enhanced
when the couplings from older to younger nodes become
dominant. With a normalized coupling matrix, the analysis
of the synchronizability of such a network is not confined
with the network topology and size. This result fits some
real-world networks quite well, such as neuronal networks
with node input not scaled with the number of connections.

But the normalization of the coupling matrix leads all in
degrees of nodes to be equal to 1, which means that every
node in the network receives the same amount of information
in a time interval. So, weighted networks with normalized
coupling matrices are not suitable for those real-world net-
works with different information-receiving abilities in their
nodes. A typical example is a computer network with com-
puters as nodes and physical wires as links, in which some
servers receive more information than the others in a time
interval. It has been found that normalization of the coupling
matrix can greatly enhance the synchronization of a network,
but how the asymmetry of the coupling matrix affects the
synchronizability of a network remains to be seen.

Considering the limitations of a weighted network with a
normalized coupling matrix, as discussed above, in this
paper the synchronizability of weighted aging scale-free
networks with non-normalized and asymmetrical coupling
matrices is studied. It will be shown that the synchronizabil-
ity of a network is improved when the couplings from older
to younger nodes become dominant, where the out degrees
are heterogeneous and their in degrees are homogeneous,
and that the synchronizability is seriously weakened or even
lost when the couplings from younger to older nodes become
dominant, where the out degrees are homogeneous and
their in degrees are heterogeneous. It should be noted that the
latter phenomenon cannot be seen in weighted growing
scale-free networks with normalized and asymmetrical
coupling matrices. It will show how the changes of the
aging exponent or the average degree affect the synchroniz-
ability of such a network. It is found that some synchronous
properties can be changed when an asymmetrical weighting
parameter approaches a critical value, −1. For example,
the heterogeneity of the degree distribution in a network
can improve the synchronizability when the asymmetrical
parameter approaches −1 and that a smaller average
degree also can improve the synchronizability when the
asymmetrical parameter approaches −1.

The rest of the paper is organized as follows. In Sec. II,
the complex dynamical network model is described, a new
weighting method is proposed, and the stability of the*Corresponding author. Email address: zouyanli@sjtu.edu.cn
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network synchronization is discussed. In Sec. III, the effects
of the asymmetry of the coupling matrix on the network
synchronizability are investigated, with detailed analysis and
simulation results. Section IV reports the simulation results
on a representative example of coupled Lorenz systems, with
brief conclusions given in Sec. V.

II. STABILITY OF SYNCHRONIZATION IN COMPLEX
DYNAMICAL NETWORKS

A. The complex dynamical network model
and the weighting method

For the growing scale-free networks with aging sits intro-
duced in �11�, a node number is introduced according to the
appearance order in the growing process, where a small node
number corresponds to an old node and a large node number
corresponds to a young node, and every link is weighted
during the growing process.

Consider a network consisting of N linearly coupled
identical systems, described by

ẋi = F�xi� − ��
j=1

N

GijH�xj�, i = 1, . . . ,N , �1�

where ẋ=F�x� denotes the dynamics of the individual node,
H�x� is a linear vector-valued function, � is the coupling
strength, �Gij� is a zero row-sum coupling matrix with off-
diagonal entries Gij =−Aij�ij, where A is the adjacency ma-
trix and �ij =

1−�
2

��ij =
1+�

2
� for i� j�i� j�, in which the pa-

rameter −1���1 governs the asymmetry of the coupling
matrix in the network and the limit �→−1 ��→1� represents
a unidirectional coupling where the old �young� nodes drive
the young �old� ones.

According to �12�, the in degree of a node i in the above
weighted network is defined as

ki−in = �
j

j�i

− Gij , �2�

and the out degree of a node j in the above weighted network
is defined as

kj−out = �
i

i�j

− Gij . �3�

The heterogeneity of the degrees in such a weighted network
can be described by the covariance of the degree distribution,
defined as

D = E�k − E�k��2, �4�

where E�k� is the mean value of all node degrees, which is
equal to the number of the increased links after a new node is
added into the network. Clearly, the larger the covariance D,
the more heterogeneous the degree distribution.

Based on the weighting method proposed here, the mean
values of in degree and out degree are equal; however, the
covariances of the in degree and out degree are commonly
unequal but they can be adjusted by the weighting parameter

�. In �10�, the normalized weighting method is used, by set-
ting Gij =−Aij

�ij

� j�Ki
�ij

, where Ki is the set of ki neighbors of

the ith node. The weight of every link will be adjusted con-
stantly with the addition of new nodes to the network. This
weighting method results in that the in degree of each node
in the weighted network remains the same and equals to 1,
even not considering the asymmetry of the coupling matrix.
The synchronizability of the weighted network will be im-
proved greatly when the asymmetrical parameter �=0, so it
is important to analyze how the asymmetry of the coupling
matrix affects the synchronizability of the weighted network.
With the proposed weighting method, for a chosen parameter
�, the weight of each link only relates to the ages of the two
connected nodes but it is not adjusted with the increase of the
number of nodes. It is easily implemented in a practical net-
work, for example, in a circuit network, since a weight of a
link can be the line resistance between the two connected
circuits, and each existing resistance �the weight of a link� is
not affected by a newly added circuit node. Both in-degree
distribution and out-degree distribution can be adjusted by
changing the asymmetrical parameter � in the proposed
weighting method, so that one can study the synchronizabil-
ity of a weighted network for only two situations: �i� the in
degrees are homogeneous and the out degrees are heteroge-
neous; �ii� the in degrees are heterogeneous and the out
degrees are homogeneous.

B. Stable region of synchronous states in the network

Following the ideas of �13�, the synchronizability of a
network is inspected by the linear stability of the synchro-
nous states �xi=xs , ∀ i�. By diagonalizing the variational
equations, one obtains N blocks in the form of

�i = JF�xs��i + ��iH��i� i = 1, . . . ,N , �5�

which differ only by the eigenvalues �i of the coupling ma-
trix G �here, JF is the Jacobian matrix�. The linear stability
of the synchronization manifold is determined by the largest
Lyapunov exponents of Eq. �5� associated with v=��i �also
called the master stability function, MSF �14��. If all the
largest Lyapunov exponents associated with �i�i	2� are
negative, then the synchronization manifold associated with
�1=0 is linearly stable.

For a generic �, the coupling matrix here is asymmetric;
therefore, its spectrum is contained in the complex plane
��1=0;�l=�l

r+ j�l
i , l=2, . . . ,N�. Moreover, since all elements

of G are real, complex eigenvalues appear in conjugate pairs.
Order all eigenvalues of G according to the order of their
increasing real parts. Let M =max�Im��l

i��, l=2, . . . ,N, de-
note the largest imaginary part of the eigenvalues. According
to Gerschgorin’s circle theorem, all eigenvalues of G are
contained within the union of circles �Ci� whose centers are
the diagonal elements of G �namely, ki-in� and radii are the
sums of the absolute values of the other elements in the
corresponding rows �namely, ��l���iCi�ki−in ,� j�i �Gij � ��.

Let S be the bounded region in the complex plane where
the master stability function provides a negative Lyapunov
exponent. When ���l , l=2, . . . ,N� are fully contained in S
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for a given �, the synchronous states of the network are
stable. So, the synchronizability of the network is described
by the range of �, within which the network can achieve
synchronization. The larger the range of �, the better the
synchronizability of the network. Since the shape and the
size of the stable region S are irregular and they vary with
the nodes and the linear vector-valued function H, it is dif-
ficult to give an accurate description of the range of �.
Roughly, a schematic diagram of a stable region S of a typi-
cal network is shown in Fig. 1, where the nodes can be
Lorenz systems or Rossler oscillators. When � satisfies the
following conditions:

� · M � T , �6�


m � ��2
r � 
M ; 
m � ��N

r � 
M , �7�

one may say that ���l , l=2, . . . ,N� is entirely contained in
the stable region S. The range of � derived from Eqs. �6� and
�7� is as follows:

� � 	
m

�2
r ,min
 T

M
,

M

�N
r �� . �8�

In Eq. �8�: �1� if T
M �


M

�N
r , then

�N
r

M �

M

T ; therefore, �

��
m

�2
r ,


M

�N
r �, so that the larger the �2

r , the smaller the �N
r ,

namely, the smaller the
�N

r

�2
r , the better the synchronizability;

�2� if T
M �


M

�N
r , then

�N
r

M �

M

T ; therefore, ���
m

�2
r , T

M�, so that
the larger the �2

r , the smaller the M, the better the synchro-
nizability. Since


M

T is determined by the node dynamics and
the linear vector-valued function H, the synchronizability of
a weighted network should be estimated by considering both
the node dynamics and the linear vector-valued function H,
as well as the coupling matrix.

Of course, if
�N

r

�2
r and M take smaller values at the same

time in a weighted network, then the synchronizability of the
network will be improved, independent of the node dynamics
and the vector-valued function H. But our studies show that
the largest imaginary value M often takes a larger value

when
�N

r

�2
r takes a smaller value in a weighted network with an

asymmetrical coupling matrix. So, it is necessary to consider
the node dynamics and the linear vector-valued function H.

Now, consider a dynamical network with the Lorenz
system as its nodes, described by

ẋ = 10�y − x� ,

ẏ = 23x − y − xz ,

ż = xy − z �9�

which is chaotic with a double-scrolls attractor �15�.
For this network, the linear vector-valued function

H= �0 0 0

0 0 0

0 0 1 �, a stable region of the synchronous states

calculated by the MSF method is shown in Fig. 2. The three
parameters corresponding to Fig. 1 are 
M =6.56, 
m=1.27,
T=2.3, so


M

T =2.852.

III. EFFECTS OF THE ASYMMETRY OF THE COUPLING
MATRIX ON THE SYNCHRONIZABILITY

In this section, the question how the asymmetry in the
coupling matrix affects the synchronizability of a weighted
network is addressed.

The network model here is a growing scale-free network
with aging sites, proposed in �11�. Start from m+1 fully con-
nected network. At each step, a new node is added with m
links, connecting to old nodes with probability pi defined by

pi =
ki�i

−


�
j

kj� j
−


, �10�

where �i is the age of node i and 
 is the aging exponent and
ki is the number of connections to node i. The relationship
between 
 and the degree distribution exponent � �namely,
P�k�
k−�, for large k� has been studied in �11�, showing that
� varies from 2 to 3 with 
 varying from −� to 0. When

=0, the network becomes the original BA growing scale-
free network �4�; when −2�
�1, the smaller the 
, the
smaller the �, that is, the smaller the 
, the more heteroge-
neous the network.

Using an aging scale-free network with N=500, m=5,
and 
=0, we have studied the relationships between some

FIG. 1. The schematic diagram of a stable region.

FIG. 2. Stable region of synchronous states in the coupled
Lorenz network.
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given parameters and the asymmetrical weighting parameter
�, as shown in Fig. 3, where Dout-degree is the out degree
covariance, Din-degree is the in degree covariance, �2

r and �N
r

are the second and the Nth real parts of eigenvalues of the
matrix G, respectively, M is the largest imaginary part of the
eigenvalues of G.

All calculation results are averages over 20 different real-
izations of networks with N=500. According to Fig. 3, one

can obtain the following results: the out degree covariance
Dout-degree becomes smaller and smaller, and the in degree
covariance Din-degree becomes larger and larger, when the
weighting parameter � varies from −1 to +1; the real part of

the second eigenvalue �2
r takes the largest value, the ratio

�N
r

�2
r

takes the smallest value, and the largest imaginary part M
takes the largest value, when � takes a value about −0.9; with

FIG. 3. Effects of the weighting parameter � on the synchronizability of a growing scale-free network with 
=0, N=500, m=5; �a�
Dout-degree and Din-degree vs �; �b� �2

r , �N
r vs �; �c�

�N
r

�2
r vs �; �d� M vs �; �e�

�N
r

M vs �.
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the increase of �, the ratio
�N

r

�2
r increases exponentially but M

decreases to a smaller value.

It can also be seen from Fig. 3�e� that
�N

r

M �min=5.712, and
when the Lorenz system is taken as the node system with the

linear vectorial function H= �0 0 0

0 0 0

0 0 1 �, one gets

M

T =2.852,

so
�N

r

M �

M

T in the range of −1���1. According to the analy-
sis on Eq. �8�, the range of �, which ensures the synchroni-
zation of the network, is ���
m

�2
r ,


M

�N
r �, so the synchronizabil-

ity of the network can be evaluated by examining the value

of
�N

r

�2
r . The best synchronizability can be achieved with �

being about −0.9, while
�N

r

�2
r takes the smallest value. The

worst synchronizability appears when �→1, while
�N

r

�2
r ap-

proaches infinity. Since

M


m
� �5,100� for various chaotic os-

cillators �13�, the network cannot achieve synchronization in
the latter case. Actually, the network lost synchronizability

with �	0.5 while
�N

r

�2
r 	100.

Figure 3�c� shows that the synchronizability of the net-
work can be changed dramatically with adjusting the asym-

metrical weighting parameter �. The synchronizability is
achieved when ��0, where the couplings from older to
younger nodes become dominant, and is weakened or even
lost with ��0 where the couplings from younger to older
nodes become dominant.

At this point, we give some explanations about the above-
observed phenomenon by using the in degree and out degree
distributions. In the above-described weighting method, both
in degrees and out degrees have the same mean value, which
does not vary with the weighting parameter � and is equal to
the number of added links, m, when a new node joins the
network. Whatever fixed state the node system stays, a peri-
odic state or a chaotic state, as long as all the node systems
are the same, the state average value of every node system is
the same when they are uncoupled. The amount of informa-
tion that a node received from other nodes is directly corre-
lated with the in degree of the node, in a given time interval,
so the larger the in degree, the more the information re-
ceived. Meanwhile, the amount of information that a node is
transmitted to other nodes is directly correlated with the out
degree of the node, in a given time interval, so the larger the
out degree, the more the information will be transmitted.
When �=0, the coupling matrix is symmetrical, both in de-
grees and out degrees have the same power-law distribution,

FIG. 4. Effects of the aging exponent 
 on the synchronizability in the aging scale-free network with N=500, m=5: �a� Din-degree vs �;

�b� Dout-degree vs �; �c�
�N

r

�2
r vs �; �d� M vs �.
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so the in degrees and out degrees have the same covariance.
When � approaches −1, the out degree covariance becomes
larger and the in degree covariance becomes smaller, which
means that the out degrees of nodes are heterogeneous. In
this case, a few nodes have large out degrees and they trans-
mit large amounts of information. At the same time, a few
nodes have small out degrees, so they transmitted very little
information; and the in degrees of nodes are homogeneous,
so each node receives approximately the same amount of
information. Since the total amounts of information transmit-
ted by all nodes are equal to those received by all nodes in
the network, the information received by most nodes comes
from a few nodes with large out degrees; therefore, the net-
work achieves synchronization easily. On the contrary, when

� approaches +1, the in degree covariance becomes larger
and the out degree covariance becomes smaller; that is, the in
degrees of nodes are heterogeneous and the out degrees of
nodes are homogeneous. In this case, the amounts of infor-
mation transmitted by different nodes are approximately
equal to each other but the amounts of information received
by different nodes are very different from each other. A few
nodes with large in-degrees receive large amounts of infor-
mation, which come from many different nodes. These infor-
mation signals are very different in both altitudes and phases,
so they may cancel each other, at least partially, inducing
noneffective communications. This is similar to the case
where surrounding nodes drive the center node in a star-

TABLE I. Different ranges of the coupling strength � with various values of � in Lorenz dynamical
networks with N=500, m=5, 
=0.

� −0.99 −0.95 −0.9 −0.85 −0.8 −0.5 0 0.2 0.5 0.8

�̄2
r 1.2246 2.0794 2.6555 3.0261 3.1036 2.4987 1.4496 1.1021 0.6068 0.2045

�̄N
r 6.1540 7.3020 9.0635 10.8920 12.6586 24.1352 40.9585 53.3261 63.9404 74.9560

� �1.0371,
1.066�

�0.6108,
0.8984�

�0.4783,
0.7238�

�0.4197,
0.6023�

�0.4092,
0.5182�

— — — — —

FIG. 5. Effects of the average degree on the synchronizability of weighted scale-free networks with N=500, 
=0: �a� Din-degree vs � with

m=2, 5, 10; �b� Dout-degree vs � with m=2, 5, 10; �c�
�N

r

�2
r vs � with m=2, 5, 10; �d� M vs � with m=2, 5, 10.
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shaped coupled network, so that the synchronizability is
weakened dramatically or even lost.

Next, we further studied the effect of the aging exponent

 on the synchronizability of weighted aging scale-free net-
works. The synchronizability of the networks varies with the
weighting parameter �, as seen from Figs. 4�c� and 4�d�,
where the three curves correspond to 
=−1, 
=0, and 

=0.5, respectively. Again, all calculations are the averages
over 20 different realizations of networks with N=500 and
m=5. Both the in degree covariance and the out degree co-
variance increase with the decrease of 
, which are shown in
Figs. 4�a� and 4�b�, respectively, so the heterogeneity in such
networks is enhanced with the decrease of 
. Figure 4�c�
shows that the smaller the aging parameter 
, the smaller the

value of
�N

r

�2
r , with � in the range of �−1,−0.9�. When the

Lorenz system is used as the nodes and its state variable z is

taken as the coupling variable, the inequality
�N

r

M �

M

T is sat-
isfied in the range of −1���1, so the synchronizability of

the network can be evaluated by examining the value of
�N

r

�2
r .

It follows that the heterogeneity of the network improves the

synchronizability when −1���−0.9, but weakens the
synchronizability when −0.9���1.

Recall that for unweighted networks with symmetrical
coupling matrices and a given power-law degree distribution
exponent �, the larger the average degree, the smaller the
average path length, the better the synchronizability.

In the following, we studied the effect of the average de-
gree on the synchronizability in weighted scale-free net-
works with N=500 and 
=0. Figure 5 shows three curves
corresponding to m=2, 5, 10, respectively. All calculation
results are the averages over 20 different realizations of net-
works with N=500 and 
=0. When the Lorenz system is
taken as the node system and its state variable z is taken as

the coupling variable, the inequality
�N

r

M �

M

T is satisfied in the
range of −1���1, so the synchronizability of the networks

can be evaluated by examining the value of
�N

r

�2
r . In the range

of −1���−0.95, the smaller the average degree m, the

smaller the value of
�N

r

�2
r . It then follows that a smaller average

degree improves the synchronizability when −1���−0.95
but it weakens the synchronizability when −0.95��� +1,
which is different from the result reported in �10�,
which studies the effect of the average degree on the syn-
chronizability in the weighted growing scale-free networks
with normalized asymmetrical coupling matrices. In �10�, it
shows that the larger the average degree, the better the
synchronizability in the whole range of −1���1.

We have also studied the effect of the average degree on
the synchronizability of the weighted networks with the ag-
ing exponent 
�0, obtaining the same result as the case of

=0.

IV. SIMULATION STUDY

In this section, we report our studies on the synchroniz-
ability of weighted growing scale-free networks with the
Lorenz system as its nodes and the state variable z as the
coupling variable.

The equations of the Lorenz system shown in Eq. �9� and
the aging scale-free networks with N=500, m=5, 
=0 are
used. Table I gives the different ranges of the coupling
strength � corresponding to various values of the asymmetri-

cal parameter �, where �̄2
r and �̄N

r are the average value of �2
r

and the average value of �N
r , respectively, over 20 different

realizations of networks. The range of the coupling strength
� with a given � is obtained from Eq. �8�.

It can be seen from Table I that the better synchronization
is achieved with � near the value of −0.9, where the range of
the coupling strength � is a relatively bigger one. The results
shown in Table I are consistent with that shown in Fig. 3.

Figure 6�a� shows the distributions of the eigenvalues of
the coupling matrix G in three different cases of �=−0.9, 0.0,
and 0.8, respectively. One can see that the eigenvalues ex-
pand quickly along the direction of the real axis with the
increase of �, which is consistent with the calculation results
shown in Fig. 3. Figure 6�b� shows the stable region of the
Lorenz systems coupled through its variable z and the points
���l , l=1, . . . ,N� with the coupling strength �=0.5 and the
asymmetrical parameter �=−0.9. It can be seen that all the

FIG. 6. Simulation study of coupled Lorenz dynamical net-
works: �a� three different distributions of eigenvalues of the cou-
pling matrix G with �=−0.9, 0.0, 0.8, respectively; �b� relationship
between the stable region of the coupled Lorenz systems and the
points ��*�l , l=1,2 ,3 , . . . ,N� with �=−0.9 and �=0.5.
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points ���l , l=2, . . . ,N� except �1=0 are contained in the
stable region of the synchronous states of the coupled Lorenz
systems, clearly indicating that the Lorenz dynamical
network achieves synchronization.

V. CONCLUSIONS

In this paper, the synchronizability of weighted aging
scale-free networks with non-normalized asymmetrical
coupling matrices has been studied in some detail. The syn-
chronizability of such weighted networks can be dramati-
cally affected by the asymmetrical parameter �. Some new
results, different from earlier reports, were obtained and ana-
lyzed. The synchronizability of the weighted networks can
be improved when the couplings from older to younger

nodes become dominant, where the out degrees of nodes are
heterogeneous and their in degrees are homogeneous, and the
synchronizability can be seriously weakened or even lost
when the couplings from younger to older nodes become
dominant, where the in-degrees of nodes are heterogeneous
and their out degrees of nodes are homogeneous. As the
asymmetrical parameter � approaches the critical value −1,
the smaller the aging exponent, the better the synchronizabil-
ity; otherwise, the bigger the aging exponent, the better the
synchronizability. Similarly, a smaller average degree can
also improve the synchronizability when � approaches −1.
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